organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Arzu Özek,^a* Süheyla Yüce,^a Çiğdem Albayrak,^b Mustafa Odabaşoğlu^b and Orhan Büyükgüngör^a

^aDepartment of Physics, Ondokuz Mayıs University, TR-55139, Samsun, Turkey, and ^bDepartment of Chemistry, Ondokuz Mayıs University, TR-55139, Samsun, Turkey

Correspondence e-mail: arzuozek@omu.edu.tr

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.006 Å R factor = 0.063 wR factor = 0.112 Data-to-parameter ratio = 13.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1-[(5-Chloro-2-hydroxyphenylamino)methylene]naphthalen-2(1*H*)-one

The molecule of the title compound, $C_{17}H_{12}CINO_2$, is not exactly planar, and adopts the keto–amine tautomeric form. There is an intramolecular N-H···O hydrogen bond, and intermolecular O-H···O hydrogen bonds link the molecules into a three-dimensional network.

Received 3 June 2004 Accepted 7 June 2004 Online 12 June 2004

Comment

Although Schiff bases have been widely used as ligands in the formation of transition metal complexes and structurally characterized, a relatively small number of free Schiff bases have been similarly characterized (Calligaris & Randaccio, 1987). Schiff bases play an important role in many fields of chemistry and biochemistry (Lozier et al., 1975; Garnovskii et al., 1993). Two characteristic properties of Schiff bases are photochromism and thermochromism (Cohen et al., 1964; Moustakali-Mavridis et al., 1978). These properties are caused by proton transfer from the hydroxyl O atom to the imine N atom (Hadjoudis et al., 1987; Xu et al., 1994). Schiff bases display two possible tautomeric forms, viz. the phenol-imine and keto-amine forms. In the solid state, the keto-amine tautomer has been found in naphthaldimine Schiff bases (Hökelek et al., 2000; Ünver et al., 2001; Odabaşoğlu et al., 2003; Özek et al., 2004), whereas the phenol-imine tautomer exists in salicylaldimine Schiff bases (Kaitner & Pavlovic, 1996; Yıldız et al., 1998).

In the title compound, (I), the keto-amine tautomer is favoured over the phenol-imine form (Fig. 1 and Table 1), and there is a strong intramolecular hydrogen bond, N1–H1a···O1. The sum of the van der Waals radii of oxygen and nitrogen is 3.07 Å (Bondi, 1964), and the intramolecular hydrogen bond in (I) is much shorter than this, *viz.* 2.590 (4) Å.

The somewhat short C2–O1 and C1–C11 bonds can be considered as C=O and C=C double bonds, respectively. This fact, together with the very short C3–C4 bond, suggests the presence of a significant quinoidal effect. A similar effect was observed for 1-[(3-hydroxypyridin-2-ylamino)methylene]-1*H*-naphthalen-2-one [C=O 1.276 (2) Å; Özek *et al.*, 2004], 1-[*N*-(*p*-hydroxyphenyl)aminomethylidene]naphthalen-2(1*H*)-one propan-1-ol hemisolvate] [C=O 1.292 (2) Å and

 ${\ensuremath{\mathbb C}}$ 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

An *ORTEP* view of (I), with the atom-numbering scheme and 50% probability displacement ellipsoids. The intramolecular hydrogen bond is indicated by the dashed line.

1.295 (2) Å; Odabaşoğlu *et al.*, 2004] and *N-n*-propyl-2-oxo-1naphthylidenemethylamine [C=O 1.277 (2) Å; Kaitner & Pavlovic, 1996]. The keto-amine form is also dominant in *N*-(α -naphthyl)-2-oxo-1-naphthaldimine [C=O 1.287 (5) Å; Gavranic *et al.*, 1996].

The title molecule is not exactly planar, with a dihedral angle of 10.20 (15)° between ring *A* (atoms C12–C17) and ring *B* (atoms C1–C5/C10). The hydrogen-bonded ring (N1, H1*a*, O1, C2, C1, C11) is almost planar. The C11–N1 bond length and C11–N1–C12 bond angle are 1.313 (4) Å and 130.6 (3)°, respectively, compared with 1.3237 (19) Å and 125.96 (16)° in 1-[(3-hydroxypyridin-2-ylamino)methylene]-1*H*-naphthalen-2-one (Özek *et al.*, 2004).

The molecules are linked by strong intermolecular $O-H\cdots O$ hydrogen bonds (Table 2) into a three-dimensional network.

Experimental

The title compound, (I), was prepared as described in the literature (Odabaşoğlu *et al.*, 2003), using 2-amino-4-chlorophenol and 2-hydroxy-1-naphthol as starting materials. Crystals of (I) were obtained by slow evaporation of a THF solution (yield 87%, m.p. 545–546 K).

Crystal data

C ₁₇ H ₁₂ ClNO ₂	Z = 2
$M_r = 297.73$	$D_x = 1.470 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
a = 7.293 (5) Å	Cell parameters from 4334
b = 7.865(5) Å	reflections
c = 13.628(5) Å	$\theta = 2.9–28.8^{\circ}$
$\alpha = 88.973(5)^{\circ}$	$\mu = 0.29 \text{ mm}^{-1}$
$\beta = 74.668(5)^{\circ}$	T = 293 (2) K
$\gamma = 63.876 (5)^{\circ}$	Plate, orange
$V = 672.5 (7) \text{ Å}^3$	$0.16 \times 0.12 \times 0.04 \text{ mm}$
Data collection	
Stoe IPDS 2 diffractometer	2638 independent reflections
ω scans	1319 reflections with $I > 2\sigma(I)$
Absorption correction: by	$R_{\rm int} = 0.123$
integration (X-RED32;	$\theta_{\rm max} = 26.0^{\circ}$
Stoe & Cie, 2002)	$h = -8 \rightarrow 8$
$T_{\rm min} = 0.951, T_{\rm max} = 0.990$	$k = -9 \rightarrow 9$

 $l = -16 \rightarrow 16$

Figure 2

An *ORTEP* packing diagram. Dashed lines indicate intra- and intermolecular hydrogen bonds.

Refinement

Refinement on F^2	H atoms treated by a mixture of
$R[F^2 > 2\sigma(F^2)] = 0.063$	independent and constrained
$wR(F^2) = 0.112$	refinement
S = 0.94	$w = 1/[\sigma^2(F_o^2) + (0.0318P)^2]$
2638 reflections	where $P = (F_o^2 + 2F_c^2)/3$
198 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.18 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

C1-C11	1.388 (5)	C4-C5	1.422 (5)
C1-C2	1.426 (5)	C5-C10	1.412 (5)
C1-C10	1.454 (4)	C11-N1	1.313 (4)
C2-O1	1.291 (4)	C12-N1	1.401 (4)
C2-C3	1.419 (5)	N1-H1a	0.88 (4)
C3-C4	1.349 (5)		
C11-C1-C2	120.1 (3)	N1-C11-C1	124.9 (3)
C11-C1-C10	120.1 (3)	C17-C12-N1	116.7 (3)
01-C2-C3	120.7 (3)	C13-C12-N1	124.0 (3)
O1-C2-C1	121.4 (3)	C11-N1-C12	130.6 (3)
C11-C1-C2-O1	-7.7 (6)	C10-C1-C11-N1	-178.9 (4)
C2-C1-C11-N1	2.1 (6)	C1-C11-N1-C12	-178.6 (4)

Table 2 Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$\begin{array}{c} N1 - H1a \cdots O1 \\ O2 - H2a \cdots O1^{i} \end{array}$	0.88 (4)	1.82 (4)	2.590 (4)	144 (3)
	0.96 (5)	1.61 (5)	2.557 (4)	166 (4)

Symmetry code: (i) x, 1 + y, z.

The H atoms attached to N and O were refined freely. Other H atoms were positioned geometrically (C-H = 0.93 Å) and refined using a riding model, with $U_{iso}(H) = 1.2U_{eq}$ (parent atom).

9652 measured reflections

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

- Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
- Calligaris, M. & Randaccio, L. (1987). *Comprehensive Coordination Chemistry*, Vol. 2, edited by G. Wilkinson, pp. 715–738. London: Pergamon.
- Cohen, M. D., Schmidt, G. M. J. & Flavian, J. (1964). J. Chem. Soc. pp. 2041–2051.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Garnovskii, A. D. Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.
- Gavranic, M., Kaitner, B. & Mestrovic, E. (1996). J. Chem Crystallogr. 26, 23–28.

- Hadjoudis, E., Vitterakis, M. & Mavridis, I. M. (1987). *Tetrahedron*, **43**, 1345–1360.
- Hökelek, T., Kılıç. Z., Işıklan, M. & Toy, M. (2000). J. Mol. Struct. **523**, 61–69. Kaitner, B. & Pavlovic, G. (1996). Acta Cryst. C**52**, 2573–2575.
- Lozier, R. Bogomolni, R. A. & Stoekenius, W. (1975). J. Biophys. 15, 955-962.
- Moustakali-Mavridis, I., Hadjous, E. & Mavridis, A. (1978). Acta Cryst. B34, 3709–3715.
- Odabaşoğlu, M., Albayrak, Ç. & Büyükgüngör, O. (2004). Acta Cryst. E60, o142–o144.
- Odabaşoğlu, M., Albayrak, Ç. & Büyükgüngör, O. & Lönneche, P. (2003). Acta Cryst. C59, o616–o619.
- Özek, A., Yüce, S., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2004). Acta Cryst. E60, 0356–0358.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.
- Ünver, H., Kabak, M., Zengin, D. M. & Durlu, T. N. (2001). J. Chem. Crystallogr. 31, 203-209.
- Xu, X.-X., You, X.-Z., Sun, Z.-F., Wang, X. & Liu, H.-X. (1994). Acta Cryst. C50, 1169–1171.
- Yıldız, M., Kılıç, Z. & Hökelek, T. (1998). J. Mol. Struct. 441, 1-10.